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Abstract

A novel algorithm for non-metric multidimensional scaling (NMDS) method is
proposed that is closely related to a means to evaluate the statistical confidence
level of the resultant configurations. Such a statistical feature was not naturally
associated with NMDS or MDS before. Our algorithm is so efficient that the relations
among 1000 items can easily be analyzed with an inexpensive personal computer. The
algorithm is illustrated with its application to, e.g., DNA sequence data.
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1 Introduction

Increasing importance of bioinformatics certainly requires efficient methods to handle very
large complicated data sets to extract patterns and rules. To this end in mind in this
paper we report a new efficient algorithm for non-metric multidimensional scaling (NMDS).
Multidimensional scaling (MDS) (see, e.g., Borg and Groenen (1997)) is a major branch of
multivariate analysis chiefly used in social sciences, psychology, and occasionally in ecology
to visualize hidden relations among objects of interest (henceforth we call them operational
taxonomic units (OTU)). Its essence is to find, in a certain metric space, a configuration
(constellation) of the points corresponding to OTUs that is compatible with the given
dissimilarity relations among them. The resultant configuration often visually exhibits the
relations/structures hidden in the original data.

The metric MDS attempts to construct a configuration of OTUs in which the dis-
similarity measure 6(7, j) for each OTU pair (i,7) is proportional to the distance d(i, j)
in the constructed configuration. The NMDS (Shepard and Kruskal 1964) attempts to
construct a configuration of OTUs whose distances d(i, j) preserve the rank ordering of the
dissimilarities in the original data. That is, for any two pairs of OTUs, (i,j) and (k,1),
the constructed configuration satisfies d(i,j) > d(k,1) if 6(i,j) > d(k,1). NMDS can be
applied to the rank data of dissimilarities (that is, qualitative data), and can often recov-
er the metric MDS results when there are sufficiently many OTUs. Therefore, NMDS is
one of the most versatile multivariate analysis methods. Usually, NMDS can deal with
much more robust data than MDS can handle. Thus, in this paper, we construct a “pure”
NMDS, maximally eliminating metric elements (even the so-called d) in contrast to the
conventional NMDS.

Our novel algorithm is closely related to the optimization of the measure of statistical
confidence level of the resultant configuration. Besides, the algorithm is very efficient
so that it even enables us to analyze N = 10* OTUs (this is not the number of binary
relations that is a much larger number ~ N?/2) with an inexpensive desktop machine. A
1000 OTU example is illustrated in this paper. Since our algorithm is of order N?In N for
updating the configuration (that is, essentially the number of the relations we handle, so
greater efficiency is hardly possible), it is clear that much larger number of OTUs can be
practically analyzed with NMDS.

The paper is organized as follows. In Section 2, the conventional NMDS methods
are reviewed to show the presence of additional and unnecessary constraints. Section 3
discusses what “pure NMDS” should be, and our new NMDS algorithm is proposed in



Section 4. Its capability of handling a large sized data is demonstrated in Section 5. A
method to measure the statistical confidence level of the resultant configurations is proposed
in Section 6. The dimensionality of the embedding space is discussed in Section 7 based on
this statistical confidence level. Finally, we exhibit an application of NMDS to a molecular
biological example in Section 8. Section 9 is a summary.

2 Conventional NMDS

Suppose an (increasing) ordering of the pair dissimilarities of N points (OTUs) {1,2,---, N}
is given. That is, for any two pairs of points (4, j) and (k, ) such that i, j, k, [ € {1,2,---, N}
we assumne that we can tell which dissimilarity of the two pairs is not smaller than the oth-
er. A typical NMDS problem may be summarized as follows: In a given metric space R
find a configuration of N points the (increasing) order of whose pair distances is as close
as possible to that of the given pair dissimilarities

All the conventional NMDS methods assume a certain intermediate pair distance (e.g.,
d below) that is compatible with the actual ordering of the pair dissimilarities and is simul-
taneously as compatible as possible with the pair distances d in the estimated configuration
of the OTUs. There are many varieties of the conventional approach.

Kruskal’s approach may be summarized as follows. We start with a set of pair distance
values d that are computed from a trial N-point configuration in R. The greatest convex
minorant (that is, the lower boundary of the convex hull) of the plot of d against the
ranking of the distances in the original data defines d. d is then revised to minimize the
stress: a suitably normalized discrepancy between d and d. After this, the whole procedure
is iterated until the stress becomes tolerably small. There are several implementations of
this idea, but we do not discuss this approach any further (See, for example, Cox and Cox

(1994) and Borg and Groenen (1997) ).

Guttmann (Cox and Cox 1994) constructed d*, which is the rearrangement of d ac-
cording to the actual ordering of the given dissimilarities §. Then, the stress Sg = ||d — d*||
is minimized for d. He showed that this procedure and Kruskal’'s procedure are equivalent.
In the actual calculation, d* is not directly considered as a functional of d, but is treated as
given just as d in each updating process. Then, the procedure is iterative as in the methods
in the preceding paragraph.



As has been seen above, the essence of the conventional NMDS is to choose d as close
to d as possible under the condition that it is monotone with respect to the actual ranking
of the dissimilarities in the original data. Depending on the interpretation of “as close as,”
different methods have been proposed as summarized on p43 of Green et al. (1970). KYST
is the program based on the least square fit. Spline function fitting, etc., are conceivable
and actually used. On p52 - 58 of Green et al. (1970), the letter ‘R’ is presented with
about 30 representative points, and NMDS is performed with various algorithms. For
example, the results of MDSCAL and KYST are different (KYST does not affinely skew
‘R’ as MDSCAL does). That is, the choice of d affects the outcome.

Thus it is clear that the conventional NMDS introduces extra constraints. If we wish
to be faithful to the basic idea of NMDS according to its creator (Shepherd), it is an
inevitable conclusion that d is required only by technical reasons for implementation. The
input data is the ranking of 9. Then, what we must compare with it is the ranking of d. If
the data set is purely without metric, but only with rank ordering, then the actual size of d
should not matter (should not affect the outcome?). We must note that all the procedures
to determine d (or d*) so far proposed are more or less affected by the actual values (or
their ratios) of d.

3 Pure NMDS

To implement NMDS in a way faithful to the idea of its creator, we must not introduce any
extra information, bias, structure, etc., into the given information: the ranking of dissim-
ilarities between pairs. We do not have any information about the actual pair distances.
We wish to look for configurations of N points in R whose pair distances have the ranking
maximally compatible with the given dissimilarity ordering.

Logically, there can be two approaches:
(A) We compare the distances d obtained from the configuration in R and the given ordering
of the pair dissimilarities 0 through their ranks only.
(B) We compare the distances d obtained from the configuration in R and all the possible
distances that are compatible with the pair dissimilarity ranking.

The method (B) was recently proposed and implemented by Trosset (1998) .

3if it does, it implies that the result of the NMDS is not unique.



The approach (B) may be interpreted as an unbiased encoding of the rank ordering
into the actual distances. In order not to bias the information due to encoding schemes
, (B) takes into account of the totality of possible encoding schemes consistent with the
rank ordering in the original data. Thus, logically (A) and (B) are equivalent, but since

encoding into distances is an extra step, (B) is conceptually and practically less direct than
(A).

4 New NMDS Algorithm

In the following, we propose a new algorithm for NMDS that realizes approach (A).

The basic idea of the algorithm is as follows: in a metric space R (in this paper, for
simplicity, we assume this to be a D-dimensional Euclidean space R = RP ) N points
representing the OTUs are placed as an initial configuration. For this initial trial con-
figuration we compute the pair distances d(,j), and then rank them according to their
magnitudes. Comparing this ranking and that according to the dissimilarity 0(i,7), we
compute the ‘force’ that moves the points in R to reduce the discrepancies between these
two rankings. The ‘force’ along the line connecting OTUs ¢ and j is chosen to decrease
(resp., increase) d(i,j), if the rank of d(i, j) is larger (resp., smaller) than that of 4(i, 7).
After moving the points according to the ‘forces’, the new ‘forces’ are computed again,
and the whole adjusting process of the OTUs in R is iterated until the positions of OTUs
converge sufficiently.

In this ‘overdamped dynamics’ the point configuration is driven by the potential energy

A=> (T, —n) (4.1)

where T, is the actual rank of the distance between the pair in R whose dissimilarity has
the true rank n in the original data. A = 0 is the ideal case. This A may be regarded as a
counterpart of the stress in the conventional NMDS. As we will see in the next section, we
can use quantities related to A to evaluate the confidence level of the resultant configuration
statistically. Now, we can set up a null hypothesis to reject at a given confidence level.
Furthermore, we can even discuss the plausibility of the substructures of the resultant
configuration.

Thus an important feature of our NMDS algorithm is that the optimization process is



directly connected to a process that improves the confidence level of the resultant configu-
ration.

In order to describe our idea unambiguously, we describe it in a preliminary algorithm
as follows:

1. The rank ordering of dissimilarities ¢;;, (¢,7 = 1,..., N) for N OTUs are given.

2. Put N points randomly in a metric space R (here, we use D-dimensional Euclidean
space for simplicity) as an initial configuration. Let their position vectors be r;.

3. Scale the position vectors in R as />; |ri|> = N.
4. Compute d;; = |r; — r;| for all OTU pairs ¢ and j in R.
5. Set the mismatch counters Cj; = 0 for all pairs (¢, 7).

6. For all 4, j, k, [, compare 0,; with 0y, and d;; with dy. If d;; > diy and 6;; < 9y (resp.,
dij < dy and d;; > 0p), add —1 (resp., 1) to counter Cj; and 1 (resp., —1) to Ci.
Otherwise, the mismatch counters are intact.

7. For OTU ¢, if C}; is positive (resp., negative), the point corresponding to it in R is
moved toward (resp., away from) the one corresponding to OTU j by the amount
s|Cyj|, where s is a small positive constant. This is actually performed at once for
each ¢ through calculating the following displacement vector for i:

where r; is the current position of OTU 7 in R.
8. Return to 3, and continue until the “potential energy” becomes sufficiently small.

9. To check convergence, we use the statistical confidence level based on a quantity
related to A in (4.1) (see the next section).

In the above algorithm, we can deal with asymmetric data as well, i.e., §;; # ¢;; if we
compare §;; with d;; while §;; with d;;(= d;;). Needless to say, if the mismatch between
0;; and 9;; is large, then representing the pair by a pair of points in a metric space is
questionable. Therefore, we will not discuss this problem any further in this paper.



One may notice that this preliminary algorithm is time consuming; the total computing
time grows as N* for one updating step for the configuration, where N is the number of
OTUs. However, we can considerably reduce this with a modification that streamlines the
force calculation step. This leads to the “pure NMDS Algorithm” we propose.

Algorithm “Pure NMDS”

1. Dissimilarities d;; (¢,7 =1,---,N) for N OTUs are given. Order them as follows:

<Gy SOy < (4.2)

2. Put N points randomly in R as an initial configuration.
3. Scale the position vectors in R as \/m = N.
4. Compute d;; for all OTU pairs (i, j) in R, and then order them as
v Sdyy Sy < (4.3)
5. Suppose 0;; is the mth largest in the ordering in (4.2) and d;; is the nth largest in the

ordering (4.3). Assign C;; = n—m. Remaining procedure is the same as preliminary
Algorithm.

In the above algorithm (and throughout this paper) we fix s. In practice, we could
choose an appropriate schedule to vary s as is often done in optimization processes. In this
paper, for simplicity, we will not attempt such a fine tuning.

Consider an example with N = 4:
012 < 034 < 023 < 013 < 014 < O4.
Suppose d;; orders as follows at a certain step of the calculation:
dip < dyz < d3y < d1z < dyy < day,

i.e., the ordering of dy3 and ds4 is reversed (15 = 6,7, = 5,15 = 4,13 =3, T, = 2,71 = 1
in (4.1)). Needless to say, both algorithms give Cy3 = 1,05y = —1, and C;; = 0 for
the remaining pairs 4,5 (¢ < j). d;; can be ordered with the aid of a sorting algorithm
with the computation of order N?In(N?), so that the single updating process requires the
computation of order N?1In N.



Except for how to treat the ties (See, e.g., Lehmann 1975), both the preliminary
algorithm mentioned first and the “pure NMDS” Algorithm given subsequently are the
same. However, if breaking ties affect the results (i.e., the result lacks structural stability),
then we cannot say any strong conclusion from the result, so that the tie problem is, except
for the stability issues, unimportant.

5 Large Size Data

To demonstrate the efficiency of the pure NMDS Algorithm, i.e., its capability of handling
a very large data set, we analyzed the data of 1,000 cities on the globe. All the computation
was done with an inexpensive PC (PII 300MHz, 256 MB SDRAM, 9GB HDD, Linux 2.0.35
with g77 0.5.21). Number of iterations were 300 steps and total CPU time was within 15
minutes. Data was taken from http://www.globalserve.net/ nac/city.html that contained
more than 2000 cities all over the world, but more than the three fourths were in the US.
We picked up all the cities outside the US (ca., 500), and then selected some from the US
— first ca., 10 cities in the alphabetical order for each state.

0;; should be the arc length between two cities ¢ and j. Actually, we used — cos 6,
where 6;; is the angle between radial vectors of the two cities. This can easily be calculated
by scalar product of the vectors. For NMDS, we need only the rank order of ¢;;. Since
the arc length is proportional to 6;; and cos 0;; is a monotone decreasing function of 6;; for
0 < 0;; <, we can use —cost;; as 0;; instead of the arc length. This is one important
merit of NMDS over metric MDS.

We attempted to imbed these cities into a 3D Euclidean space so that d;; = |r; — r}]
are compatible with the original rank order of §;;. s = 1 x 107* and we reached a converged
solution after 300 iterations. Although we did not get a A = 0 solution, A became very
small. In Fig, 1, we compare the original and the imbedded configurations of the 1000
cities. It is difficult to show spherical configurations here, so we draw 2D projections from
the same direction for both plots. In spite of such a non-uniform distribution of cities
on the globe, recovering of the configuration is excellent. Moreover, in the 3D Euclidean
space, the 1000 cities locate correctly on a sphere.

This example clearly demonstrates the capability of our method to handle very large
point sets. We have never seen any example of NMDS or MDS that handled such a large



Figure 1: Positions of 1,000 cities (<) and their reconstructed positions (+) by the pure
NMDS Algorithm. The reconstructed map is scaled, rotated, and inverted to compare with
the actual map.

data set. (For example, a currently available commercial software, PC-MDS?*, limits the
number of OTU to be less than 100. For NMDS in Statistica® upper limit of number of
OTU is 90.)

6 Measure of Confidence Level

Our algorithm is not free from the problem of local minima as all of the previously proposed
algorithms. Despite the demonstration in Fig. 1, generally speaking, NMDS cannot give

4http://marketing.byu.edu/htmlpages/pcmds/pemds.htm
Shttp://www.statsoftinc.com/toc.html



the perfect solution with C;; = 0 for all pairs (¢, ). We usually have several local minimum
solutions depending on initial trial configurations.

In the conventional NMDS (Shepard and Kruskal 1964), stress is used to judge the
plausibility of the obtained configuration. Since we do not have such an extra device as
cf, we cannot use stress to check the quality of the result. The statistical properties of the
stress has never been studied to our knowledge. Our measure of discrepancy A defined by
(4.1) is statistically not trivial (because d;; are not independent, even if the positions of
the OTUs are), and we do not know its statistical property. However, the following closely
related quantity can be defined for each OTU j

INDED GBS0 (6.1)

where T,(j) and n are rank order only within N — 1 (4, j) pairs for the given j. Thus,
A(j) can be regarded as a statistical variable for the relative position of the jth OTU with
the remaining OTUs. We can estimate the probability P(d) of A(j) < d with the null
hypothesis that the rank ordering of d;; (i € {1,2,---, N} \ {j}) is totally random with
respect to the rank ordering of 6;; (i € {1,2,---, N} \ {j}). If N is sufficiently large, then
A(j) obeys a normal distribution N((M?® — M) /6, M*(M + 1)*(M —1)/36) (M = N — 1).
For smaller N there is a table for P(d) (Lehmann 1975). Thus we can always test the null
hypothesis with a given confidence level for jth OTU.

As can easily be noted, instead of A defined in (4.1), we could use >>; A(j) (or an
appropriately weighted sum) or the corresponding confidence levels as the potential function
for the dynamics. This algorithm will be studied separately elsewhere.

The above quantity is also related to Kendall’s 7 (Lehmann 1975),
T = QP{(dZ] — dkg)((sij — 5kg) > 0} —1, (62)

where P{Q} is the probability of the event Q). When there are no tie data, i.e., for all
(i,j), (l{?, 6), dij 7& dkg and 5ij 7é (5kg, P{(dU — dkg)((sz] — 5kg) > 0} is equal to

Zn[(Tn - n) > O]
[#ot(i, j), (k, O)pairs] = [N(N = 1)/2][N(N - 1)/2 - 1]/2’

(6.3)

if two rankings d and ¢ are statistically independent, where N is total number of OTUs
and summation is taken only when 7;, — n > 0. Kendall’s 7 is also used to check whether
there is a significant monotonic relationship between the two variables, although we do not
employ this in the present paper.

10



In practice, we proceed as follows. First, choose a few small confidence levels , e.g., 5%,
1%, and 0.5% and count the number of OTUs whose confidence level is worse than each
value. Then as the most reliable solution choose the configuration with the smallest number
of OTUs with inferior confidence levels. If an OTU j cannot reject the null hypothesis that
the order of d;; (i € {1,2,---,N};i # j) is uncorrelated to ¢;; with the confidence level
better than ¢%, let us call j a ‘¢% level OTU’ (here, q = 5, 1 or 0.5; we choose the smallest
possible for each OTU). Suppose that solution A has two 5% level OTUs, three 1% level
OTUs, and five 0.5% level OTUs, and that the solution B has one, two, and three OTUs
for each confidence level, respectively. In this case, we regard solution B is more reliable
than solution A.

Of course, there can be undecidable cases, and also there may be different but appro-
priate criteria. For example, it is difficult to decide which is more reliable the result with
two 0.5% level OTUs or the other with only one 1% level OTU. For these cases we may
employ both solutions, may increase dimensionality, or may use only OTUs with smaller
confidence levels (See below). In any case we must accumulate more experience in this
respect.

One should notice that our criterion can be used for conventional NMDS with d. We
demonstrate this when we compare our algorithm with KYST in Appendix. The difference
between ours and the conventional ones is that our NMDS uses an optimization procedure
directly related to the improvement of the confidence level of the resultant configuration.

7 Dimensionality of Imbedding Space

In MDS, the dimensionality of the imbedding space must be decided. In the convention-
al NMDS, stress values are plotted against the imbedding dimensions and the minimum
dimensionality for saturation of the stress value is chosen.

Here, we wish to propose a slightly different criterion. As seen later in actual examples,
there is a strong tendency for only a few OTUs to cause most discrepancies. In other words,
most of the OTU positions converge to more or less the same relative positions independent
of the initial configurations and the locations of only a few OTUs fluctuate. This fluctu-
ation diminishes as dimensionality increases. Therefore, our criterion for determining the
dimensionality is as follows. First, obtain different solutions starting from various initial
configurations. Then, select the solutions with relatively small A(j)s as mentioned in the

11



previous section. In such a solution, if the locations of OTUs do not fluctuate considerably
despite the change of initial configurations, we regard the solution to be reliable enough.
Even if some OTUs fluctuate significantly, if there are stable subconfigurations with small
A(j)s (computed with the OTUs in the subconfigurations only) independent of the initial
random configurations, then we may regard these substructures meaningful.

To illustrate how to choose the imbedding dimension, we use an example of imbedding
20 randomly placed points in 50 Euclidean space into D(< 5) dimensional spaces by
NMDS. s = 1 x 107* and the number of iterations is 2000. For each imbedding dimension
D, we computed solutions starting from five different initial configurations. For D = 2,
there were some 5% level OTUs. Therefore, D = 2 is not large enough. On the other
hand, when D = 3, only one solution out of five solutions had one 0.5% level OTU and
the remaining four had no 0.5% or worse level OTUs. For D = 4, no solutions had OTUs
worse than 0.5% level. Thus, in this example, we can conclude that 3D is a reasonable
dimension to recover the 20 points in the 5D space with 0.5% confidence level.

Figure 2 gives the Shepard plot for D = 2,3,4. When D = 2, the plot is scattered,
but for D = 3 or 4 the rank order of ¢;; is well reproduced by the rank order of d;;. Thus,
our criterion for the choice of the embedding dimension is consistent with the conventional
Shepard plot criterion.

Incidentally, one may wonder why this 5D example can be reduced to 3D. One reason
is that 20 points are not enough to express 5 dimensions. For example, to construct a
unit cube, we already need 2° = 32 points. Of course, to make a 5-simplex we need only
6 points, so there are really 5D configurations made of fewer than 20 points. However,
if 6 points are randomly placed in a 5D space, it is highly likely that they lie close to
some lower dimensional subspace. Thus, the smallness of the number of OTU coupled
with fluctuations (statistical effects) seems to allow 20 points in a 5D space to lie close
to a certain 3D subspace. Actually, principal component analysis told us that cumulative
percentage up to the 3rd principal component of this sample configuration was about 80%.
Thus, our 5D random data example is essentially a 3D configuration.

To illustrate our criterion for meaningful configurations, we deal with Wish’s country
data (N = 12). Both Kruskal and Wish (1978) and Trosset (1998) analyzed this data.
In our analysis, s = 1 x 107 and the number of iterations was 2000. We started with
five different configurations in 2 and 3D. The results had always several 5% level OTUs.
Thus, neither 2D nor 3D imbedding provided us with reliable solutions. This conclusion
is the same as that of Kruskal and Wish. We conclude that our criterion of reliability is
consistent with the conventional ones for this example.

12
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Figure 2: Shepard plots for D = 2, 3,4 imbedding of the 20 points randomly distributed
in 5D. One sample configuration is shown for each case. D = 3,4 looks more reasonable
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| Runs | >0.5% [ >1% | >5%

1 11 ]9,12,13,24 10,27,30

2 - 11,25 | 10,24,26,27,28,29.30
3 | 2829 9,27 10,24,30

1 10 24,27,28.29,30

5 24 28 27

Table 1: Results of NMDS for DNA sequence data (D = 2) for cichlid fish in both Lake
Tanganyika and Lake Malawi. See figure caption of Fig. 4 for the whole list of fish names.
Confidence levels of OTU are shown. Rows represent trial runs starting with five different
initial configurations.

8 Molecular Biological Example

To illustrate the use of our algorithm we deal with DNA sequence data of cichlid fish in
both Lake Tanganyika and Lake Malawi (Kocher et al. 1995). See figure caption of Fig. 4
for the whole list of fish names. For simplicity d;; is defined as the number of base (ATGC)
mismatches, i.e.,

0y = L — 25[8ik7 Sjk}v
k

where s is the base (ATG or C) at kth position of the DNA sequence of OTU ¢ and
O[Sk, Sjx| takes 1 only when s, = sj; and L is the total number of bases. One might
criticize that this dissimilarity is not a reasonable choice, because usually the number of
uncommon bases is not proportional to the time since the speciation occurred. However,
since what we need is just a rank order, any definition which does not alter the rank order
gives the same result. Thus we believe that our results obtained by NMDS is robust and is
not affected by a particular definition of distance between the sequences. In this example,
N =31l,s=1x107°(2D),1074(3D,4D), and the number of iterations is 2000. First, we
try to imbed OTUs into 2D Euclidean space. Five trial runs had very different values of
A(j) as shown in Table 1.

Clearly, all solutions have a few worse-than-1%-level OTUs. Thus, as a whole, D = 2
cannot be regarded as a good imbedding dimension. However, if we exclude 24,27, and
28th OTUs from solution 5, the solution can be regarded as a good 2D configuration with
the confidence level better than 0.5%. Or, if we construct more solutions, there may be a
better solution. This is just an illustration, so we do not go further in this paper.

14
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Figure 3: Shepard plot for 3D imbedding of DNA sequence data, where only 27th OTU
has confidence level larger than 1 %.

For 3D Euclidean space as the imbedding space 27th OTU was with 1% confidence
level and for three out of five runs 30th OTU was with 0.5% confidence level. Thus again,
we cannot get any solution with confidence level 0.5%, but if we exclude 27th and/or 30th
OTUs, we can get such a solution for the remaining OTUs.

Even for D = 4, we cannot get 0.5% confidence level solution for all OTUs. In two
out of five runs, 24th OTU is with 1% confidence level, and in the remaining three runs
27th OTU is with 0.5% confidence level. For reference, we give the Shepard plot for 3D
case (Fig. 3). Coincidence between d;; and §;; is not bad as expected.

Our result is consistent with the phylogenetic analysis due to Hasegawa and K-
ishino (1996), where some phylogenetic clades are reported. For example, {1,2,---,9},
{10,11,---,14}, and {15, 16, ---,21} are major clades. All of them can be seen as clusters
in our results (Fig. 4; the former two clusters can be seen in the ZX-plane projection and
the last one in the XY-plane).
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Figure 4: 2 dimensional projections of the obtained 3D configuration, i.e., projection to
the XY-plane, YZ-plane, and ZX-plane (the directions of the axes are arbitrary), for cichlid
DNA data. Major clusters correspond to the phylogenetic clades proposed by Hasegawa
and Kishino (See text). Numbers denote (Names in parentheses other than Malawi repre-
sents tribes OTU belongs to. Malawi is the name of the lake OTU lives in.): 1: Pseudotro-
pheus zebra (Malawi) 2: Buccochromis lepturus (Malawi) 3: Champsochromis spilorhynchus
(Malawi) 4: Lethrinops auritus (Malawi) 5: Rhamphochromis sp. (Malawi) 6: Lobochilotes
labiatus (Tropheini) 7: Petrochromis orthognathus (Tropheini) 8: Gnathochromis pfefferi
(Limnochromini) 9: Tropheus moorii (Tropheini) 10: Callochromis macrops (Ectodini) 11:
Cardiopharynz schoutedeni (Ectodini) 12: Opthalmotilapia ventralis (Ectodini) 13: Xenoti-
lapia flavipinnus (Ectodini) 14: Xenotilapia sima (Ectodini) 15: Chalinochromis popeleni
(Lamprologini) 16: Julidochromis marlieri (Lamprologini) 17: Telmatochromis temporalis
(Lamprologini) 18: Neolamprologus brichardi (Lamprologini) 19: Neolamprologus tetracan-
thus (Lamprologini) 20: Lamprologus callipterus (Lamprologini) 21: Lepidiolamprologus e-
longatus (Lamprologini) 22: Perissodus microlepis 1 (Perissodini) 23: Perissodus microlepis
2 (Perissodini) 24: Cyphotilapia frontosa (Tropheini) 25: Tanganicodus irsacae (Eretmo-
dini) 26: Limnochromis auritus (Limnochromini) 27: Paracyprichromis brieni (Cyprichro-
mini) 28: Oreochromis niloticus (Tilapiini) 29: Tylochromis polylepis (Tylochromini) 30:
Boulengerochromis microlepis (Tilapiini) 31: Bathybates sp. (Bathybatini)
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However, we do not claim that our results reproduce phylogenetic analysis fully. For
example, the main purpose of Hasegawa and Kishino (1996) is to show that the clade
{1,2,---,5} is monophyletic, which can never be seen in our results. In the phylogenetic
analysis, even if genetic distance is short, OTUs cannot be regarded as neighbors when there
are side branches between them. On the other hand, in our analysis, short genetic distance
means neighboring OTUs. Thus, what we see can differ from phylogenetic relations. The
biological meaning of this possible discrepancy must be explored.

As mentioned above, if there are no tie data in ¢;;, the preliminary algorithm and
the pure NMDS algorithm give identical results. In the above example, there are tie data,
but the number of such pairs is not large. Thus, the difference between two algorithms is
expected to be small. In fact, two algorithms give almost the same solutions.

9 Summary and Concluding Remarks

We have proposed a novel algorithm for non-metric multidimensional scaling (NMDS) that
is presumably the most faithful to the original idea of NMDS. This is why we call the
proposed method the pure NMDS. The algorithm is closely connected to the statistical
confidence level of the resultant spatial configuration of the OTUs. Thus, we can use
statistical criterion to evaluate the plausibility of the OTU configuration and its subcon-
figurations in the imbedded result. The numerical efficiency of our algorithm allows us to
handle a large number (even 10,000 with the aid of an inexpensive desktop computer within
a day) of OTU. This feature is worthy of stressing from the practical (esp., bioinformatics)
point of view.
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Appendix. Comparison with KYST.

One may wonder if our algorithm gives different results from the conventional methods.
Here, we compare our results with those given by KYST, taken from http://www.netlib.org
/mds/kyst2a.f. What we change are DIMMAX, DIMMIN, N(= number of OTUs), and the

input data matrix.

e Map of 22 cities: We have chosen 22 cities in the US out of 1000 cities used in our
paper. KYST correctly reproduces relative positions of 22 cities, and so does our new
NMDS. Thus we can confirm that our KYST setup is correct.

e 20 random points in 5D: DIMMAX=5 and DIMMIN=2. The obtained solution in
3D is the same as we obtained. STRESS obtained are 0 for 5D, 0.045 for 4D, 0.071
for 3D, and 0.209 for 2D. Thus significant decrease of STRESS occurs when D is
increased from 2 to 3. This means, D = 3 is the plausible imbedding dimension. This
conclusion agrees with ours.

e DNA Sequence: DIMMAX=5 and DIMMIN=2. We applied our statistical check for
the obtained solution for 3D to find that 24th and 27th OTU had confidence level
larger than 1%. This means that KYST and ours give the solutions with the same
confidence level (to reject the null hypothesis).

However, STRESS obtained are 0.050 for 5D, 0.069 for 4D, 0.104 for 3D, and 0.173
for 2D. Thus D dependence of STRESS is not useful to decide which D is the most
plausible, while our criterion can. Therefore, our criterion is also useful to check if a
conventional method like KYST gives plausible results or not.

From these results we may conclude that our novel algorithm gives the same results
as KYST when it works. Our method is more advantageous than KYST, because it is
conceptually direct, is numerically highly efficient, and is naturally connected with rank
order statistical tests.
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